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INTRODUCTION

Induced electric currentas are generated in conductors by time vary-
ing magnetic fields. When the source of the fleld is outside the body,
the induced currents must flow in closed paths, hence the designation
"eddy currents"., In most problems eddy currents are unwanted cince they
are a source of heat and energy loss and in aome applications can cre~
ate dynamic forces and magnetic pressures, A few applications, such as
magnetic forming and levitatlon, have exploited the dynamic force pro-
ducing capability of eddy currents. A third interest in eddy currents 1la
their potential for nondestructive testing. The presence of flaws or
cracks interrupt the natural flow of electric current, and the detection
of the change of electron flow can give a clue to the presence of flaws
in solid conductors.

The calculation of eddy currents in conductors iz generally carried

out by either using a magnetic or an electric potential. A comparison

current density potential has the advantage that it need te calculated
only in the conductor, whereas the magnetic potential must be solved both
ingide and outside the conductor. The latter method, therefore, poses
potential problems for numerical methods.

Numerical methods must generally be used for the solution of eddy
current problems in conductors of complex shape, The finite element meth-
od (FEM) and the discrete circult element method have been used for some
years for the solution of these problems. Recently, the boundary element

method (BEM) (alsoc called the boundary integral equation method) lias

44

of the two methods is given by Carpenter [1]. The electric field or o
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been applied to problems in electromagnetics. Wu et al [2] and Ancelle

et al [3] have addressed magnetostatic problems by the BEM while Trowbridge

[L] has considered magnetostatic problems and eddy currert problems by
the magnetic potentisl approach. Very recently, Salon and Schneider [5]
have solved problems of eddy current flow in long prismatic conductors

by the BEM based on an electric potential approach. The boundery ele-
ment method has the important advantage that only the boundary of a hody
(rather then the entire domain) needs to be diseretized in a numerical
golution procedure - thus effectively reducing the dimension of a problem
by one. However, a full matrix must be treated in the BEM while the

FEM requires operations on sparse matrices.

The direct boundary element approach [2-5] uses & singular solution
of a differentiul equation in an infinite domein as & kernel in the cor-
responding integral equation. This direct approach can be used in simply
connected as well ag multiply-connected domains. However, if a cutout in
a conducting plate is a crack, numerical difficulties might arise from
discrete modelling of the crack boundary. This difficulty can be over-
come if modified kernels are used so that the new kernels are the singu-
lar solutions of the governing differential equations for an infinite re-
glon with a crack already present in it. This technique has been recent-
ly developed for two-dimensional harmonic and biharmonic operators in
connection with study of stresses near c¢rack tips in bodies undergoing
inelastic deformation [6-8]. Use of these modified kernels allows the
proper boundary conditions to be satisfied exactly over the entire crack
surface and discretization of the crack surface is no longer necessary
in a numerical solution procedure. The method 1s thus perfactly suited

to the study of two-dimensional problems of eddy current flow in cracked

bodies.
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The purpose of this paper ia the study of eddy currents in thin
cracked plates with a view towards detectlon of cracks or flaws by non-
destructive testing. An anelytical formulation usging an electric poten-
tial is first presented for the determination of eddy currents in a thin
flat conducting plate with a line crack present in it, The applied mag=-
netic field is assumed to be harmonic in time but can have an arbitrary
spatial distridution inside the plate, This results in Polason's esqua-

tion for the eleciric potential. A boundary element formulation is next

presented using modified kernels for the Laplacian operator in two dimensions.

Numerical results ars given for eddy currents in a center-cracked
square plate with the applied fisld being that due to a cilroular coll.
Stream lines are given for various positions of the coll relative to the
crack, The induced temperature at any point in the plate is proportional
to the square of the density of the induced current at that point. Caleu-
lated induced temperature profiles are presented for various coll posi-
ticns. An eddy current intensity factor, analogous .o a stress intensity
factor, is defined at a crack tip. Finally, experimental resultse are

presented for an infrared lsotherm of induced eddy currents in a cracked

aluminum plate,
GOVERNING DIFFERENTIAL EQUATIONS

A thin, flat uniform plate made of a conducting material is shown
in Fig. 1. The plate boundary cen be arbitrary, ite thickness iz h
and the conductivity of the plate materiel is ¢. The plate has a line
crack of length ¢ = 2a present in it. The crack can have arbitrary

orientation relative to the outside boundary of the plate.
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The coordinate system chosen 1z shown in Fig, 1. The X and X,
axes lie on the mid-surface of the plate, with the % axis aleng the
erack and X5 normal to it. The origin of coordinates lies at the cen-
ter of the crack in the nldsurface of the plate, The x3 exis 1s normal
to the plate. Also, the unit vectors 1, ] and k are oriented along
the coordinate axes,

Consider a current density J, which is induced in the plate by an
oscillatory magnetic field §° outside the plate, The current distri-
bution 1s assumed to be uniform across the plate thickness and oscillatory
in nature. The skin depth, which is inversely proportional to the square
root of the frequency, is aszumed to be large compared 4o the plate thicke-
ness. Under these assumptions no bending occurs in the plate,

According to Ohm's law
J = of (1)

vhere ? is the electric fleld (the Hall effect or mapnetoresistive terms
ere neglected in Ohm's law).

For low frequency currents, the continuity condition ia
VT = 0 (2)

where Vv 1is the gradient operator in two dimensions. Thus, a stream

function (or electric potential) w(xl.xz) can be defined such that
J = 9x(yk) = -kxvy (3)

80 that Jl-—w— J --—aw-




Using Faraday's law of induction

B
1Bty 8

with B the total magnetic field inside the plate and t time, the

governing differential equation for the stream function is

3B
7Py = o 2w o (35 + BY) (5)

In the above, Bé 18 the self magnetic field inside the plate due
to the current J. In general, thls fleld can be obtained from the Blot-
Savart law as an integral, over the plate, of a kernel times the stream
function ¢. Equation (5) would then become an integro=differential
equation for the stream funmetion [9];/’if, however, the applied fleld is
sinusoidal and the resulting skin depth is greater than ten times the plate
thickness, the self field term can be neglected relative to the applied
field ?o (10]. Under this assumption, and with Bg - ég ei“t (where
1 = /o1 and w ia the osecillation frequency), the spatial part of the

stream function ¢ satlsfies the equation

vey = tuoB = £(x,,x,) (6)
which is a two-dimensional Poisson's equation with a prescribed nonhomo-
geneous term. For simplicity, the same notation is used in the follow-
ing for the amplitudes of the various oscillatory functions, as has been
used so far for the functions themselves.

Eddy curvent distributions using a similar elsciric potential upproach

have been obtained by Salon and Schneider [5]. Their formulation is

valid for the determination of currents in long prismatic conductors

"
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! ‘ and results in a Helmholtz equation for the stream funetion ¢. Thus,
l \ the work of Schnelder and Salon is analogous to plane strain problems
l in mechanics, while the present paper addresses conductors in the shape

|- of thin plates. This is analogous to plane stress.

j, on 1t. Thus, for a point on either the crack boundery ac] or on the

outside boundary 3C, (Fig. 1)

. g&'-
gg-ds 0 g (7)

where n is an unit normal to the boundary at a point on it and s i=
the distance meassured along a boundary in the antlclockwise sense, Thus,
b if ¢ 1is a constant &, on acl and another constant a, on 302,
equation (7) is satisfied. One of there constants can be set to zero
without loss of generality and the other one is determined by the auxil-
lary condition
¢ Jetds = 0 (8)
acl -
X vhere t 13 an unlt tangent to acl at a point on it., Physically,
this equation implies that the aet flux following through the crack ia

Zero.

The boundary conditions on ¢, in this formulation, are therefore

¥ =0 on the crack boundary dC, (9)

%% = 0 on the outside boundary aC, (10)
[-1")

ag in 48 "0 (11)

1
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Equations (9~11) together with the field equation (6) constitute
a well posed problem.

Tt should be noted that this formulation assumes that no current
flows across the crack or crack tip. This formulation leads to a cure
rent density singularity at the crack tip, as does analogous formulations
for the stregss at a crack tlp. Physically we suspect that there is a
finite reslstance or current leakage across the crack tip which would
relieve the singularlty in actual conductors. However this is not con-
sidered in thia paper, Instead we will characterize the current at the
erack tip by a current density intensity factor analogous to that In

fracture mechanics.
BOUNDARY RLEMENT FORMULATION

Integral egquatlons
An integral equation formulation for Poisson's equation (6) can be
written as (Pig. 1)
emy(p) = ¢ K(p,Q)G(a)ds,
302

+ fAK(P.Q)f(q)d.A (12)

q

This is & single layer potential formulation where G, a source
strength function on the ocutside boundary, must be determined from the
boundary condition on it (equation 10). The points p (or P) and
q (or Q) are source and field points, respectively, with capital let-
ters denoting points on the boundary of the body and lower case letters

denoting pointas inslde the body. The area of the body B 1s denoted
by A.
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The kernel K(p,q), for a simply connected region, ig normally chosen

to be a singular solution of Laplace's equation in appropriate dimensions,
eg. K= R.nrpq = Re[¢(z.zo)]
with ¢(z,z°) = zn(z-zo) .

Here rpq is the distance between a source point p and a field point
q, Re denotes the real part of the complex argument and 2z and L
are the source and field points, respectively, in complex notation.

In this problem, however, the kernel must be chosen such that it
vanlishes on the erack boundary acl. This is achieved by augmenting
; with a second piece ¢“ which equals the negative of $ when the source
point 2z lies on acl (PLg. 1). Furthermore, ¢“ must satisiy Laplace's
equation and be regular inside the body B. TFor an elliptical cutout

*
acl. ¢ is derived by meking use of the mepping function
1
z = p(g) = T hme (13)

which transforms the region on and outside an ellipse in the 2z plane

to a region cn and inside an unit circle in the § plane. The parameter
mn equals (a-b)/(a+b) (with (a+b) = 2) 4in terms of the seml-major
and minor axies, & and b respectively, of the ellipse. For the line
crack in this problem, a 1s taken €0 be equal to 2 eand b 1is zero.
Thug, m equals 1, Using this value of m, the sugmented function

¢ 1s determined as [6]

o(z,;,zo) = En(l-ri/E) - ln(l-rif) {1k)




vhere r, = ———m—— , || <1

=
=L
E=Ziez v le|l =1

and the kernel X in eqﬁﬂtion (12) is
K(p,a) = Rel4(z,2,2,] : (15)

A superposed bar denotes, as usua', the complex conjugate of a complex
quan®tity.

Use of K from equation (15) in equation (12) satisfies equation
(9). It has been proved in ref. [6] that this formulation also satis=
fies the integral condition (11) on the crack surface. Thus, the proper
boundary conditions on the crack surface are satisfied in an implicit
manner and discretization of the crack boundary is not necessary in a
nunerical sclution procedure.

The remaining boundary condition (1.0) on the outside surface is satis-
f{ed by using a differeniiated version of (12) and taking the limit as p
inaide B approaches a point P on ace. Defining

H = Re“ﬁ%’ - IM-Z-% - 3t

Hy = -Re(-%%:) = -Re(3 + 24

9z

and

%% = Re[%%] = Hn, (1 summed over 1, 2)

wvhere n, eare the compcnents of the unit outward normal to 802 at

some point on 1t, the boundary conditon (10) becomes

R PO
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0= ¢ #(P,Qn,(P)a(Q)ds
3C,

+ fAHi(P.q)ni(P)r(q)qu (17)

Q

Equation (17) is valid for a point P on 3C, where it is local-
1y smooth. It can be shown that in this case there is no extra term due
to a residue from the limiting process. The houndary integral must be
iuterpreted in the sense of a Cauchy principal value.

The current componenets Jl and J, at & point p inslide the bedy

2
are obtained from equations like (12) with the kernel K raplaced by
Hl(p.Q) and Hz(p,Q) respectively. As p approaches a point on 802

it can be shown that
» »
ir EnJJ(p ) = hj(p )

then enJJ(P') = hJ(P“)+ ntd(P*)G(P*)

where p' is infinitesimally close to P'. 802 is locally smooth at

P* and tJ(P“) are the components of the unit anticlockwlse tangent
vector to 302 at P“. Thug, the residue is zerc for the normal component
and equals G{P)/2 for the tangential component of the current, as a point
approaches the outer boundary. The actual current components, of course,

remain continuous as a point approaches the boundary.

Discretization of equations and solution strategy

The outer boundary of the bedy, 23C is divided into W, stralght

2 2
boundary elements using N, (N, = Na) boundary nodes and the interior
of the body, A, 1s divided into ny triangular internal elements,

A discretized version of equation (17) is

b
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0= XNEIAsiHi(PM'Q)ni(PM)G(Q)dsQ

* In, Jun i Bypadny () 1(c)an

a (18)

vhere P, 1is the point P where it coincides with & node M at a cen-
ter of a boundary segment on aca and Asi and AAi are boundary and
internal elements respectively.

A Bimple numerical scheme is used in which the source strengths
G are assumed to be plecewlse uniform on each houndary segment with
their values to be determined at the nodes which lie at the centers of
each segment. The integrals of Hi on boundary elements are evaluated
analytically for the singular and by Gaussian quadrature for the regu-
lar portions. Nonsingular area integrals of known integrands over tri-
angular internal cells are evaluated by Gaussian quadrature. This in=-

tegrand becomes singular when the source point lies on the side of or

inside of a triangle over which the integral 1z being evaluated. In fact,

the location of an internal source point, in equation (12), can be ar-

bitrary. In any case, for singular integrands, the order of the singularity

is 1/r, r being the distance between the source and field points.

The area element, however, is rdédr (in polar coordinates). This form

of qu is8 used to change the integrand into a regular function, and

then the integral is evaluated appropriately by Gaussian quadrature,
Substitution of the plecewise uniform source strengths into equa-

tion (18) and carrying out of the necessarv integrations leads t¢ an

algebraic system of the type

{0} = [AV{G} + {4} (19)
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The coefficients of the matrix [A] contain boundary integrals of
the kernel. The vector {d} contains contributions from the area integrals
and the vactor (G} the unknown source strengths at the boundary nodes.
The dimenslon of {G} depends only on the number of boundery elements
on BC2 and the internal @iscretization is necessary only for the evalu«
ation of integrals with known integrands.
Equation (12) for the stream function ¢ and analogous equations
for the current components Jl and J2 are dlscretized in similar fashion.
The soluticn strategy is as follows. The matrix [A] and vector
{4} 1in equation (19) are first evaluated by using the appropriate ex-
pressions for the kernels and the prescribed function f in equation
(6). Equation (9) is sclved for the vector {G}. This value of (G}
18 now used in a discretized version of equation {12) to obtain the values
of the stream function y at any point p. Finelly, the current vec=

tor at any point is obtained from equations enalogous to (12).
NUMERICAL RESULTS

Field Due to a Circular Induction Coll. A center-cracked smquare plate

with a circular induction coil placed above it is shown in Fig. 2. The
square plate ls of side L with a center crack of length o = 2a, The
coordinate system is shown in Figs. 1, 2, The coil is of radius 8,
with its center at the point (xJ,xD,h ). The induced field B° at

a point ¢ (xl.xa) in the plate, from the Bict-Savart law, is

o uoI d!xg
23 feota RS (20)
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where Hy, is the permeability of vacuum, I 1is the current in the coil,

ds & length element along the coll (ds = g¢aod¢) snd

- § = (xi-xl+aocos¢)§ * (xg-x2+a°sin¢)g + b k

with R = |R| .

Thus, the function f(x ,%,) in equation (6) is
X%

iwouoI cke(dsxR)
f(xl.xz) — S6co:ll R3 (21)

The dimensionless line integral I can be written as

Ko o

IQ" c{ao{(xl xl)cos¢+(xg-x2)ain¢]+a§}d¢
o [(x;-xl)2+(xg-x2)2*2a°[(xi-xl)c0l¢+(x;-x2)ain¢]+a§+h§]§7§

dexR)e
3

¢coil

ol —~

This integral is evaluated by Gaussian integration in the numerical

calculations (6 Gauss pointe between O and n/2).

Nondimensional Equations. Equation (6), with f(xl,xz) defined by equa-

tion (21), can be nondimensionalized to the form

sarnaiisenistansh i

where

Py = T
KT I

J) ol O hxi/c . :'E: » hx:/c

(iw1,2) , L=bL/c , &

°
n 2 2 2
v - 2+ _3:_ y Ro= 16c and the skin depth
27 T2 2
axl 3L, 2ré
[
2
e e

Further, the dimensionless current density is

E-ch
LiIR

- huolc s ﬁo = Lho/e

S
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Geometrical Parameters and Boundary Mesh. The values of the gecmetrical

parameters, used in the numerical celculations, are

~

L=20 , & = L and 1 , ho =) ,

s L] -]

. xl-0,1.2,3.h.5. snd 6 , =0

;2
The dimensionless crack length here is L, The results for any crack
5 length ¢ can be determined from the above equaticnas.

A typlcal boundary element mesh for the problem is shown in Fig. 3.
Only the upper half of the plate is modelled due to symmetry. This mesh
has U42 boundary segments and 128 internal cells. The boundary ele-
ments are uniformly distributed along the boundary of the plate, The
symmetry line is not discretized. The unknown values of the source strengths
G (equation 18) lie only on the boundary nodes, The internal discretiza-
tion is necessary only for the evaluation of the area integral in equation
(18). The integrand in this integral iz completely knowm. Nonsingular
integrals are evaluated by Gaussian quadrature with 6 Gauss points
on a boundary segment and T Gauss points in an internal cell. A hxy
grid is used for the evaluation of singular area integralzs (see below
equation (18)).

The uniform field problem is anelogous to the Saint Venant prob-
lem of torsion of long prismaetic bars with end couples., The computer
program used here has been verifisd by solving torsion problems in the
| absence of cracks [11] and the logie for inclusion of the crack has been
verified by solving Mode III crack problems [6].

The boundary integral algorlthm was aelso applied to a plate with a
notch cut instead of a crack. The results were compared with an analysis

using & finite element method, [10], and the agreement was very good.

L T
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Eddy Current end Temperature [ines. Eddy current stream lines (constant
@ lines) are shown in Figa. L=5 for a coil of redius 4. Fig. 4 shows
the lines in a plate without a crack in it, and Fig. 5 shows how the streanm

lines are affected by the crack for dlfferent colil positions. A close-up

o
1

crowding of stream lines near the crack tip leads to large gradients of

of the streanm lines near a crack tip for ; = 2 1is shown in Fig. 6. The
@ (and therefors large induced currents) in this region. The local tem-
perature is proportional to the square of the current density (é-é)
and this leads to a hot spot at the crack tip. This is shown in Fig. 7
which shows lines of constant induced temperature. The contour lines
go off scale as one approaches the crack tlp. The behavior of the singu-
larity at the crack tip is discussed later in the subsection entitled
'Eddy Current Intensity Pactor'.

Finally, the siream lines for a smaller coil (of diameter squal

to half the orack length) centered at (2,0,1) are shown in Fig. 8.

Temperature Scans. A matter of considerable interest in this approach to
nondestructive testing is the exlstence of hot spots due %o the presence
of a crack, PFigure 9 shows calouwlated temperature profiles along a line
slightly above the crack (;2-0.05) for different coil positions (i; =
0,1,2 and 6). The coll radius here is four (equal to the crack length).
Hot spots are seen near the crack tips., The strongest hot spots arise
when an edge of the cuil is near a crack tip., These tamperatures are much
higher than other moderate hot spots elsevhere in the plate. A discuse

sion of experimental results is given in the next section.
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Self Induced Fileld at Center cf Coil. One method of electromagnetic non-

destructive testing uses one or more passive sensing coils together with

an active induction coil [12]. The purpose of the sensing coils im to meams=

ure the self induced field (back e.m.f.) and to try to ctaserve changes
in back e.m.f. due to the presence of cracks., With this in view, the
self induced field was caleculated at the center of the induction coil

for various coil positions. The method used is the Biot~Savart Law which

I
3
u h (gxR)

I-O 6 Se——
B3 Tr “plate k R3 aA (23)

gives the induced field B, as

vhere now the induced current density in the plate, must be used., The
integral must be evaluated over the plate with dA an ares element in
the plate. The current density 1s assumed to be plecewilse uniform over
sach internal ccll in thie approximate calouwlation, with the value de-

termined at the centroid (x;,x;) of the cell, Thus, in thie case

Q O\ Q _C\T -
Rw (xl'x1>i + (xz-xe)J +h Xk

- Q
and
no™oaA, [0 (x2exS)ed, (x2-xS)]
I _ Yo e Ty~ My~ S~ D Ny §
B, = 1o (2k)
30 121 R

where AAi is the ares of the ith triangular element.
A plot of normalized Bg with respect to coll position is showm in

Mg, 10, The values are normalized with respect to Eg vwhen the coil

0
2

geen that in this example the position of the coill relative to the crack

center is directly above the crack center (i.e. xi mx, w0), It is

causes little variation in the induced field at the coll center. From
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these calculations, it appears that for low frequenciles the back e.m.f.

method 18 not useful for detection of cracks and that the temperature

scan approach appears to be much more promising for nondestructive test-

ing in this case.

Eddy Current Intepsity Factor. It is well known from elastic fracture

mechanics that ctress components exhibit a square root singulsrity near

a crack tip. It ia therefore expected that the components of the current

vector, in this problem, should display similar behavior near a crack tip.

This, in fact, is the case, as shown in Fig. 11 where J2 is plotted

as a function of r, the distance from the right crack tip. The plot
is for the coil center at (1,0,1). The eddy current density squared
ig seen to be inversely proportional to the distance »r.
An eddy current intensity factor MIII’ analogous to the stress
intenslity factor for Mode III, is defined here as
k2 2
e § (25)
4 plot of MIII at the two crack tips, as functlons of coll posi=-
tion, is shown in Fig. 12. The eddy current intensity factor is seen

to pesk when an edge of the coil is near a crack tip.

Computing Times., All the computing reported in this paper was carried
out on an IEM 370/168 computer at Cornell University. A typical compu~-
ting time for stream lines in a cracked plate for a fixed coil pomition

(eg. Pig. 8 ) was 100 c.p.u. seconds.
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EXPERIMENTAL RESULTS

Infrared Experiments

Conventional eddy current nondestructive techniques use a small ine
duetion coil and search coils to induce eddy currents near tae surface of
solids and tc measure to back emf generated by these currents [12]. To detet
a flow or crack, the coils must be moved over the surface near the flow
in order to meassures a change in voltage in the search coil. Recently & new
method has been proposed uming infrared scanning technology [10], This method
is based on the fact that eddy currents create heat and that this small
temperature change can be detected using an infrared sensitive device,

In the present experiments an aluminum plate 15 em x 30 cm, 0.51 mn
thick, had a crack placed in its center, parallel to the 15 cm width., The
erack was created by scoring & line in the aluminum with e sharpy edge and
flexing the plate until fatlgue produced a thorough creck in the plate.

The length of the crack was & cm. One tip of the orack was 3 cm from one
edge of the plete and the other was 6 om from ‘the other edge.

The induction coil was wound from 10 turns of copper wire on a S.1
em coll form se that the mean Alameter of the coil was about 5.7 om, slight-
lv smaller than the crack length, The width of the coll was 1.3 em and the
coll face was placed 6.4 mm from the plane of the cracked plate,

Pulsed electiric currents of the order of 9.3 KA peak current and 3.2
msec, duration were used with a rise time to peak of about 0.7 msec. The
sensitivity of the infrared system was 0.1 = 0.2°C, If an infrared scan
iy made of the plate immedlately after the firing of the current pulse,
heat conduction may be neglected, and the measured rise In temperatura
18 proportional to the integral of 3% over time, (See e.g. [10].)

The infrared system used for these experiments is a UTI Corp. Spec-

trotherm infrared scanning system. Radiation from different points in

- 18 «
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the plane of focus iz detected by a photoconductive crystal. A two-
dimensional scan is obtained by two setas of rotating mirrors. The output
cen be displayed elther on a grey scale tube or the voltage can be color

quantized intc ten colors, Figure 13 shows a black and white photograph

of two color quantized Iinfrared scana. Fach of the scans rapresent 7° "{80~

therms" for different induction coil positions. The top photo corresponds

to a coil position coentered at the middle of the crack, The bottom photo

corresponds to an induction ccll position centared %o the left of the crack

with the coll center I em from the left edge of the plate, These photos
show that a "hot" spot forms at the tip of the orack due to the current
flowing around the crack. (The white line shows the vertical position
of the orack.) In Figure 13 a right crack tip shows up as circular isc=
therms. When the coll position is moved to the left the left erack tip
shows up as & hot spot, which appear as clrcular isotherms. The hot spot
on the left edge 1is due to inerease of current desnsitiy near the edge.
Nesdless to say, the color photograpid are more dramatic, But the exper-
iments show the same qualitative behavior as the numerical results in Fig-
wes T, 9, 14 and 15.

0f course further experimental work must ' » done to establish the
practical use of this technique, especial.ly as regards below-surface cracks
that do not penetrate the sclid. The results do indicate the potential
for such a technique. It 1s a visual method whose fesiures change gqualw~
itatively as well as quantitatively when a crack interupts the flow of

induced currents.
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Figure 9. Plots of induced temperature or eddy current denaity squared
along a line slightly above the crack (Qz = 0,05) for various

LY Ao ~
coil positions. a, " 4, X, = 0, h° 1.
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Self induced field at the center of the induction coil am a
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function of coil position. a, = 4, x
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Figure 11. Induced eddy current densgity squared as a function of position near

the right crack tip (;1 = 2), ;o -4, ;g =1, xg =0, ﬁo -1,
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Figure 12, Eddy current intansity factor at crack tips aa functions of

coil position. a, = 4, xg =0, h° -1,
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Figure 13. Black and white photographa of color quantized infrared isotherms

of induced eddy currents in a cracked aluminum plate.
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Calculated induced temperature (or eddy current density squared)

along a line dightly above the crack (;2 = 0.05) for the

experimental situation (Fig. 13a) with a, " 1.91, x; - xg -0,
ho = 0,85,
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